656 research outputs found

    Comment on ``Quantum Phase Transition of the Randomly Diluted Heisenberg Antiferromagnet on a Square Lattice''

    Full text link
    In Phys. Rev. Lett. 84, 4204 (2000) (cond-mat/9905379), Kato et al. presented quantum Monte Carlo results indicating that the critical concentration of random non-magnetic sites in the two-dimensional antiferromagnetic Heisenberg model equals the classical percolation density; pc=0.407254. The data also suggested a surprising dependence of the critical exponents on the spin S of the magnetic sites, with a gradual approach to the classical percolation exponents as S goes to infinity. I here argue that the exponents in fact are S-independent and equal to those of classical percolation. The apparent S-dependent behavior found by Kato et al. is due to temperature effects in the simulations as well as a quantum effect that masks the true asymptotic scaling behavior for small lattices.Comment: Comment on Phys. Rev. Lett. 84, 4204 (2000), by K. Kato et al.; 1 page, 1 figur

    Spin nematic ground state of the triangular lattice S=1 biquadratic model

    Full text link
    Motivated by the spate of recent experimental and theoretical interest in Mott insulating S=1 triangular lattice magnets, we consider a model S=1 Hamiltonian on a triangular lattice interacting with rotationally symmetric biquadratic interactions. We show that the partition function of this model can be expressed in terms of configurations of three colors of tightly-packed, closed loops with {\em non-negative} weights, which allows for efficient quantum Monte Carlo sampling on large lattices. We find the ground state has spin nematic order, i.e. it spontaneously breaks spin rotation symmetry but preserves time reversal symmetry. We present accurate results for the parameters of the low energy field theory, as well as finite-temperature thermodynamic functions

    Accessing the dynamics of large many-particle systems using Stochastic Series Expansion

    Full text link
    The Stochastic Series Expansion method (SSE) is a Quantum Monte Carlo (QMC) technique working directly in the imaginary time continuum and thus avoiding "Trotter discretization" errors. Using a non-local "operator-loop update" it allows treating large quantum mechanical systems of many thousand sites. In this paper we first give a comprehensive review on SSE and present benchmark calculations of SSE's scaling behavior with system size and inverse temperature, and compare it to the loop algorithm, whose scaling is known to be one of the best of all QMC methods. Finally we introduce a new and efficient algorithm to measure Green's functions and thus dynamical properties within SSE.Comment: 11 RevTeX pages including 7 figures and 5 table

    Monte Carlo Simulations of Quantum Spin Systems in the Valence Bond Basis

    Full text link
    We discuss a projector Monte Carlo method for quantum spin models formulated in the valence bond basis, using the S=1/2 Heisenberg antiferromagnet as an example. Its singlet ground state can be projected out of an arbitrary basis state as the trial state, but a more rapid convergence can be obtained using a good variational state. As an alternative to first carrying out a time consuming variational Monte Carlo calculation, we show that a very good trial state can be generated in an iterative fashion in the course of the simulation itself. We also show how the properties of the valence bond basis enable calculations of quantities that are difficult to obtain with the standard basis of Sz eigenstates. In particular, we discuss quantities involving finite-momentum states in the triplet sector, such as the dispersion relation and the spectral weight of the lowest triplet.Comment: 15 pages, 7 figures, for the proceedings of "Computer Simulation Studies in Condensed Matter Physics XX

    Reply to the Comment by Sandvik, Sengupta, and Campbell on ``Ground State Phase Diagram of a Half-Filled One-Dimensional Extended Hubbard Model''

    Full text link
    In their Comment (see cond-mat/0301237), Sandvik, Sengupta, and Campbell present some numerical evidences to support the existence of an extended bond-order-wave (BOW) phase at couplings (U,V) weaker than a tricritical point (U_t,V_t) in the ground state phase diagram of the one-dimensional half-filled U-V Hubbard model. They claim that their results do not agree with the phase diagram proposed in my Letter (cond-mat/0204244), which shows a BOW phase for couplings stronger than the critical point only. However, I argue here that their results are not conclusive and do not refute the phase diagram described in the Letter.Comment: 1 page, published versio

    Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet

    Full text link
    We present results of extensive quantum Monte Carlo simulations of the three-dimensional (3D) S=1/2 Heisenberg antiferromagnet. Finite-size scaling of the spin stiffness and the sublattice magnetization gives the critical temperature Tc/J = 0.946 +/- 0.001. The critical behavior is consistent with the classical 3D Heisenberg universality class, as expected. We discuss the general nature of the transition from quantum mechanical to classical (thermal) order parameter fluctuations at a continuous Tc > 0 phase transition.Comment: 5 pages, Revtex, 4 PostScript figures include
    • …
    corecore